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Abstract. A comparative study has been carried out on the magnetic properties of the
Heisenberg-like models with and without internal spin fluctuations. A two-spins-per-site Heis-
enberg-like model is used to mimic the internal spin fluctuations inside atoms. Using the
double-time Green’s function decoupling method, we have calculated the magnetization and
paramagnetic susceptibility of the model Hamiltonians for different atomic spins as functions of
the temperature and exchange energies. Our study suggests that the internal spin fluctuations
generally reduce the transition temperature, and modify the magnetic behaviours. Unlike the
results obtained by using the usual Heisenberg model, our results show that the Curie constant
of the two-spins-per-site Heisenberg model depends on the individual moments, rather than on
the resultant saturated magnetic moment. The possible physical implication of our result is also
discussed.

1. Introduction

The Heisenberg Hamiltonian [1] has been studied extensively in the past [2–10]: its magnetic
behaviour above the Curie temperatureTC was studied using the high-temperature expansion
method [2, 3], the low-temperature properties were investigated by the spin-wave method
[4], and the Green’s function decoupling technique [5, 6] was employed to give a unified
magnetic picture over the whole temperature range. All of these studies have shown that
the paramagnetic susceptibilityχ(T ) aboveTC satisfies the Curie–Weiss law, and can be
expressed asχ = C/(T − TC), whereC = µ2

eff /3kB is the Curie constant. In the absence
of internal spin fluctuations,µeff is also the saturated magnetic moment. However, this
relationship between the Curie constant and the saturated magnetic moment is established on
the assumption that the total atomic spin magnitude is fixed, and no internal spin fluctuations
inside the atom are possible.

In practice, the atomic spin in the transition metal oxides is contributed by the electronic
spins in the different orbitals; thus the total atomic spin is not fixed, and spin fluctuations
inside the atom are unavoidable. For the transition metal oxides, the crystal field splits
the five d orbitals into the degenerate doublet eg levels and triplet t2g levels. This may
suggest that the total atomic spin is composed of two sub-spinsSd andSt contributed by
the doublet and triplet states, respectively. We assume that the spin fluctuations inside the
degenerate orbitals eg or t2g are small, and that orientation fluctuations among theSd and
St can be large. In this way, we hope to simulate some of the magnitude fluctuation of
the atomic spin. Thus, we extend the usual one-spin-per-site Heisenberg model to the two-
spins-per-site situation. The relative orientations of the two sub-spins imitate the internal
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spin fluctuations. In fact, this model is also closely related to the binary magnetic alloy
system, where the two sub-spins represent the two atomic spins in the cell. To find out
how the internal spin fluctuations affect the magnetic properties of this two-spins-per-site
Heisenberg model, it is of interest to make a comparative study of the magnetic properties
of the two-spins-per-site and the one-spin-per-site models for the whole temperature range.
Physically speaking, the spontaneous magnetization below the critical temperature depends
sensitively on the total atomic spin or the saturated magnetic moment of the atom, while the
paramagnetic susceptibility above the critical temperature depends instead on the sub-spins,
because of the thermal fluctuations.

In this paper, we have studied the magnetization and paramagnetic susceptibility of the
two-spin Heisenberg model for various values of sub-spins, using the conventional Green’s
function decoupling technique. Our results show that the magnetization as a function of
temperature depends strongly on all of the inter-atomic exchange energies, while the Curie
temperature is determined by the largest exchange energy of neighbouring sub-spins of the
same species, and the effective atomic spin. In contrast to the results obtained by using the
one-spin-per-site Heisenberg Hamiltonian, where the Curie constant depends on the resultant
saturated magnetic moment, our results show that the Curie constant of the two-spins-per-
site Heisenberg model depends instead on the individual moments. Thus, in the case of
large internal spin fluctuations within an atom, there is no direct connection between the
saturated magnetizationM(T = 0) and the Curie constantC.

We would like to mention here that various modifications of the Heisenberg model and
its extensions have been proposed previously. For example, motivated by the Van Vleck
argument [11] that the intra-atomic exchange interaction plays an important role in the
transition metal ferromagnetism, Inagaki [12] and Takano and Uchinami [13] formulated a
model for the doubly degenerate d-orbital states with one electron per atom. The spin and
isospin operators for the orbital degree were used in their model, and their averages are
taken as order parameters. An analysis of this spin–isospin Heisenberg model was carried
out in the molecular-field approximation, and two phase transitions were observed. The
phase diagram of this model was also studied by Kugel and Khomskii [14], and the exact
solution for the one-dimensional chain and for the symmetry interaction was obtained by
Uimin [15]. Note that this model is different from our model, in which the two spins do
represent the spin degree of freedom.

The rest of the paper is organized as follows. In section 2, the model Hamiltonian
is presented, the solution of the problem is formulated in terms of the Green’s function
decoupling method, and a set of self-consistent equations are derived. The numerical results
of our calculations of the magnetization and inverse paramagnetic susceptibility are given
and discussed in section 3. Section 4 gives our conclusions.

2. The model Hamiltonian and its solution

The two-spins-per-site Heisenberg model which imitates the internal spin fluctuation has
the following Hamiltonian:

H = −gµBHext ·
∑
i

(Sdi + Sti )−
1

2

∑
i,δ

(Sdi Sti )

(
J1 J3

J3 J2

)(
Sdi+δ
Sti+δ

)
− 1

2

∑
i

(Sdi Sti )

(
0 J0

J0 0

)(
Sdi
Sti

)
. (1)
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Here,Sd andSt stand for the two spin operators of the system.Hext refers to external field,
g is Land́e factor, andµB is the Bohr magneton.i is the lattice site index, andδ denotes
the nearest neighbour of sitei. J0 is the intra-site spin exchange energy, which favours
on-site parallel alignment of the two spins when it is positive, and vice versa.J1, J2, andJ3

are the inter-site spin exchange energies, which impose conditions on the alignment of the
neighbouring spins. Unlike in the one-spin-per-site Heisenberg model, where the system is
either ferromagnetic or antiferromagnetic depending on the sign of the exchange energyJ ,
the extended two-spin model can even have states where one spin species has ferromagnetic
coupling and the other spin species has antiferromagnetic coupling. In the following, we
restrict ourselves to the case of the ferromagnetic state.

According to the Green’s function decoupling method, the problem of obtaining the
magnetic properties of the model Hamiltonian amounts to solving the retarded Green’s
functions as defined below:

G
αβ(n)

ij (t − t ′) = 〈〈Sα+i (t); (Sβ−j (t ′))n(Sβ+j (t ′))n−1〉〉
= − iθ(t − t ′)〈[Sα+i (t); (Sβ−j (t ′))n(Sβ+j (t ′))n−1]〉. (2)

(α, β) = (d, t), S± = Sx ± iSy are the raising and lowering operators,θ(t) is the step
function of time, and〈 〉 denotes the thermal average. [A,B] stands for the commutator
of the operatorsA andB. The integern takes the values 1, 2, . . . ,2Sd for Gdd(n)

ij (t − t ′)
andGdt(n)

ij (t − t ′), and 1, 2, . . . ,2St for Gtd(n)
ij (t − t ′) andGtt(n)

ij (t − t ′), respectively. The

required Green’s functions in the frequency and momentum space,G
dd(n)

k (ω) andGtt(n)

k (ω),
are given by

G
dd(n)

k (ω) = 〈[Sd+, (Sd−)n(Sd+)n−1]〉(ω − Ek2)

(ω − Ek1)(ω − Ek2)−
[
J0+ J3γ (k)

]2 〈Sdz〉〈Stz〉
(3a)

G
tt(n)

k (ω) = 〈[St+, (St−)n(St+)n−1]〉(ω − Ek1)

(ω − Ek1)(ω − Ek2)−
[
J0+ J3γ (k)

]2 〈Sdz〉〈Stz〉
(3b)

with

Ek1 = gµBHext + J1(γ (0)− γ (k))〈Sdz〉 + (J0+ J3γ (0))〈Stz〉 (4a)

Ek2 = gµBHext + J2(γ (0)− γ (k))〈Stz〉 + (J0+ J3γ (0))〈Sdz〉. (4b)

γ (k) ≡ ∑Rδ
eik·Rδ is the structure factor. Then the self-consistent equations determining

〈Sdz〉 and〈Stz〉 are easily obtained from the spectrum theorem:

〈Sdz〉 =



1

2(1+ 281)
(Sd = 1

2)

1+ 281

1+ 381+ 382
1

(Sd = 1)

3
2 + 581+ 582

1

(1+81)4−84
1

(Sd = 3
2)

(5a)

〈Stz〉 =


1

2(1+ 282)
(St = 1

2)

1+ 282

1+ 382+ 382
2

(St = 1)

(5b)



5646 Ke Xia et al

where

81 = 1

N

∑
k

1

Ek+ − Ek−

[
Ek+ − Ek2

eβEk+ − 1
− Ek− − Ek2

eβEk− − 1

]
(6a)

82 = 1

N

∑
k

1

Ek+ − Ek−

[
Ek+ − Ek1

eβEk+ − 1
− Ek− − Ek1

eβEk− − 1

]
(6b)

and

Ek± = (Ek1+ Ek2)±
√
(Ek1− Ek2)2+ 4(J0+ J3γ (k))2〈Sdz〉〈Stz〉

2
. (7)

β = 1/kBT is the inverse temperature. Equations (5)–(7) form a closed set for computing
the equilibrium magnetization for both the individual spin species and their summation.

3. Numerical results and discussion

We have studied the magnetic properties of the model Hamiltonian for different atomic spins
as functions of the temperature and exchange energies, and these results are compared with
those obtained by using the usual Heisenberg model. For the numerical calculation, we have
restricted ourselves to a three-dimensional cubic lattice. In this case, the structural factor
γ (k) = 2(cos(kxa)+ cos(kya)+ cos(kza)), wherea is the lattice constant. The equilibrium
values of〈Sdz〉 and〈Stz〉 are calculated by the iteration method. Since it is difficult to obtain
an analytical expression for the magnetic susceptibility, we calculate the magnetization for
small external magnetic fields numerically and get the magnetic susceptibility from its slope.
Our detailed numerical calculations show that the magnetic structure depends sensitively
on the magnetic interactions present in the model. While the parametersJ1 andJ2 control
the neighbouring sub-spin alignments forSd andSt , respectively,J0 andJ3 determine the
relative orientations of the two sub-spin species. In the case of weak couplings of the two
sub-spin species, the Curie temperature is mainly determined by the sub-spin species which
has the largest inter-atomic exchange energy. While the saturated magnetic moment at zero
temperature is given bySdz + Stz whenJ0 andJ3 favour the parallel alignment, the Curie
constant deduced from the high-temperature paramagnetic susceptibility does not depend on
the total saturated moment; instead it depends on the sub-spin moments and can be nicely
expressed asC ∝ [Sd(Sd +1)+St (St +1)]/3kB . Thus, even if the total saturated magnetic
moment is large, the Curie temperature can be low whenJ3 andJ0 are small, and thus so
can the Curie constant.

To study the effect of the internal spin fluctuations on the magnetic properties of the
two-spins-per-site Heisenberg model, we first calculate the magnetization and paramagnetic
susceptibility of our model with the sub-spinsSd = 1, St = 1/2, and compare them with
those obtained by using the usual Heisenberg model withS = 3/2 andJ = J1. As we can
see from equation (1), our model resembles the usual Heisenberg model when all of the
inter-atomic exchange energiesJ1, J2, andJ3 take the same values. Thus, in the following,
we setJ1 = 1, and discuss the role played byJ0, J2, andJ3, separately.

In figures 1(a) and 1(b), the temperature-dependent magnetizationM(T ) = gµB(Sdz +
Stz) and the paramagnetic susceptibilityχ(T ) = ∂M/∂H are shown for various values of
J2, while the other parameters are fixed atJ1 = 1.0, J0 = 0, andJ3 = 0.25. The motivation
is to see how the imbalance of the two sub-spin systems affects the total magnetization as
well as the paramagnetic susceptibility. The dotted, dashed, chain–dotted, and chain–double-
dotted lines refer toJ2 = −0.1, 0.1, 0.5, 1.0, respectively. The solid line refers to the
usual Heisenberg model. As we can see from figure 1(a), the saturated magnetic moments
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Figure 1. (a) The magnetization and (b) inverse paramagnetic susceptibility as functions of
the temperature andJ2. The other parameters areJ1 = 1.0, J0 = 0, andJ3 = 0.25. The
dotted, dashed, chain–dotted, and chain–double-dotted lines refer toJ2 = −0.1, 0.1, 0.5, 1.0,
respectively. The solid line corresponds to the usual Heisenberg model, withS = 3/2 and
J = 1.

are the same for the two-spins-per-site and the usual one-spin-per-site Heisenberg models.
When temperature increases, the magnetization curve of the two-spins-per-site model starts
to deviate from that of the usual Heisenberg model, and the change is most significant when
the two sub-spin species become most asymmetrical. The Curie temperatures deduced are
kBTC/J1 = 2.80, 2.81, 2.85, 2.93 for J2 = −0.1, 0.1, 0.5, 1.0, respectively. The Curie
temperature for the usual Heisenberg model iskBTC/J = 5.03, which agrees with the
previous result. The magnetization curve withJ2 = 1 does not approach the one for the
usual Heisenberg model because of the small value that we take forJ3 = 0.25. In this case,
the two sub-spin species are not tightly bound together, and strong internal spin fluctuations
decrease the effective total atomic spin, and thus the Curie temperature.
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The inverse paramagnetic susceptibility of our model above the Curie temperature is
shown in figure 1(b) as a function of reduced temperature for the same set of values
of J2; the slopes at high temperature are almost independent of the exchange energies.
This is so since the two sub-spin species are thermally decoupled from each other at high
temperature, and their contributions to the paramagnetic susceptibility are additive and given
by C ∝ [Sd(Sd + 1) + St (St + 1)]/3kB . Note that the slope of the paramagnetic suscept-
ibility of the usual Heisenberg model is given byC ∝ S(S + 1)/3kB .

Figure 2. (a) The magnetization and (b) inverse paramagnetic susceptibility as functions of
the temperature andJ0. The other parameters areJ1 = 1.0, J2 = 0.5, andJ3 = 0. The
dotted, dashed, chain–dotted, and chain–double-dotted lines refer toJ0 = 0.1, 0.5, 1.0, 2.0,
respectively. The solid line corresponds to the usual Heisenberg model, withS = 3/2 and
J = 1.

To study the effect of the intra-site spin coupling, we have also calculated the
magnetization and paramagnetic susceptibility as functions of temperature for several values
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Figure 3. (a) The magnetization and (b) inverse paramagnetic susceptibility as functions of
the temperature andJ3. The other parameters areJ1 = 1.0, J2 = 0.5, andJ0 = 0. The
dotted, dashed, chain–dotted, and chain–double-dotted lines refer toJ3 = −0.1, 0.1, 0.5, 1.0,
respectively. The solid line corresponds to the usual Heisenberg model, withS = 3/2 and
J = 1.

of J0; the results are presented in figures 2(a) and 2(b). To obtain a clear view of the role
played byJ0, we have taken an asymmetrical parameter set, withJ1 = 1.0, J2 = 0.5,
and J3 = 0. Four different values ofJ0 = 0.1, 0.5, 1.0, 2.0 correspond to the dotted,
dashed, chain–dotted, chain–double-dotted lines. The larger the value ofJ0, the stronger the
bonding of the two sub-spins. The Curie temperatures do not change much asJ0 is varied,
and they are given bykBTC/J1 = 2.70, 2.71, 2.72, 2.75 for J0 = 0.1, 0.5, 1.0, 2.0,
respectively. The reason that the Curie temperature is so small in comparison with that
obtained by the means of the usual Heisenberg model is the fact thatJ3 = 0, so the highest
Curie temperature is determined byJ1 and the effective total atomic spin. At the smallest
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Figure 4. (a) The magnetization and (b) inverse paramagnetic susceptibility as functions of the
temperature and sub-spin values. The other parameters areJ1 = 1.0, J2 = 0.5, J3 = 0.5, and
J0 = 0.1. The dotted, dashed, chain–dotted, chain–double-dotted, short-dashed, and solid lines
correspond toSd = 1/2 andSt = 1/2, Sd = 1/2 andSt = 1, Sd = 1 andSt = 1/2, Sd = 1
andSt = 1, Sd = 3/2 andSt = 1/2, andSd = 3/2 andSt = 1, respectively.

value ofJ0 studied, namelyJ0 = 0.1, the two sub-spin species are almost decoupled, and
the magnetization curve can be viewed as resulting from two sub-spin magnetization curves
with different Curie temperatures. The effect ofJ0 on the high-temperature paramagnetic
susceptibility is the same as in figure 1(b).

The relative sub-spin fluctuations depend on both the intra-site spin coupling and the
neighbouring inter-site spin coupling. The effects of the inter-site spin couplingsJ3 are
demonstrated in figures 3(a) and 3(b), As before, we take the parametersJ1 = 1.0, J2 = 0.5,
andJ0 = 0 as fixed, and letJ3 vary. The dotted, dashed, chain–dotted, and chain–double-
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dotted lines correspond the values ofJ3 = −0.1, 0.1, 0.5, 1.0, and the Curie temperatures
arekBTC/J1 = 2.72, 2.72, 3.20, 4.10, respectively. Again the solid line refers to the result
obtained by means of usual Heisenberg model. One can see a clear difference between the
roles played byJ3 andJ0. J3 bonds the two neighbouring sub-spins, and thus contributes to
the build-up of the magnetic long-range order.J0 only bonds the two intra-site spins, and
merely makes full use of the sub-spin exchange energy. Thus, a larger value ofJ3 means
a stronger binding, and a higher Curie temperature. WhenJ3 becomes very large, the
temperature-dependent magnetization curve approaches that of the usual Heisenberg model.
This suggests that largeJ3 suppresses the internal spin fluctuations; it makes the two sub-
spins behave as a rigid spin which is described by the usual Heisenberg model. Note that
the saturation magnetization depends sensitively on the sign of the exchange energyJ3.
The two sub-spin moments add whenJ3 > 0 and oppose each other whenJ3 < 0. In
contrast to the magnetic property below the transition temperature, the influence ofJ3 on
the paramagnetic susceptibility is weak. The ultimate behaviour is determined by the two
sub-spin species independently.

As we can see from the above figures, the magnetic properties of the two-spins-per-
site Heisenberg model are quite different from those of the usual Heisenberg model. In
figures 4(a) and 4(b), we show the temperature-dependent magnetization and paramagnetic
susceptibility for various sub-spin values; the exchange energies are fixed atJ1 = 1.0,
J2 = 0.5, J3 = 0.5, andJ0 = 0.1. In this figure, the dotted, dashed, chain–dotted, chain–
double-dotted, short-dashed, and solid lines correspond toSd = 1/2 andSt = 1/2, Sd = 1/2
and St = 1, Sd = 1 andSt = 1/2, Sd = 1 andSt = 1, Sd = 3/2 andSt = 1/2, and
Sd = 3/2 andSt = 1, respectively. The Curie temperature increases monotonically with
the total atomic spin. For the same total atomic spins, the Curie temperatures have different
values, because of the asymmetry of the two sub-spin species. It is clear from figure 4(b)
that the slope of the paramagnetic susceptibility depends only on the sum of the sub-spin
squares.

Table 1. The dependence of the saturated magnetic momentMs , Curie constantC, and Curie
temperatureTC as functions of the exchange energies and sub-spin values.

J1 J2 J3 J0 Sd St Ms/gµB C/(gµB)
2 TC

1.00 −0.10 0.25 0.00 1 1/2 1.5 0.913 2.80
1.00 0.10 0.25 0.00 1 1/2 1.5 0.916 2.81
1.00 0.50 0.25 0.00 1 1/2 1.5 0.921 2.85
1.00 1.00 0.25 0.00 1 1/2 1.5 0.927 2.93
1.00 0.50 0.00 0.10 1 1/2 1.5 0.910 2.70
1.00 0.50 0.00 0.50 1 1/2 1.5 0.915 2.71
1.00 0.50 0.00 1.00 1 1/2 1.5 0.920 2.72
1.00 0.50 0.00 2.00 1 1/2 1.5 0.932 2.75
1.00 0.50 −0.10 0.00 1 1/2 0.5 0.903 2.72
1.00 0.50 0.10 0.00 1 1/2 1.5 0.915 2.72
1.00 0.50 0.50 0.00 1 1/2 1.5 0.926 3.20
1.00 0.50 1.00 0.00 1 1/2 1.5 0.927 4.10
1.00 0.50 0.50 0.10 1/2 1/2 1.0 0.502 1.58
1.00 0.50 0.50 0.10 1/2 1 1.5 0.922 2.43
1.00 0.50 0.50 0.10 1 1/2 1.5 0.926 3.24
1.00 0.50 0.50 0.10 1 1 2.0 1.338 4.16
1.00 0.50 0.50 0.10 3/2 1/2 2.0 1.526 5.58
1.00 0.50 0.50 0.10 3/2 1 2.5 1.931 6.50
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The above study suggests that the magnetization of our model is a sensitive function of
the exchange energies; its saturated magnetic moment is mainly determined by the exchange
energiesJ0 andJ3, while the Curie temperature depends on both the exchange energies of
the same sub-spin speciesJ1 andJ2 and those of the different sub-spin speciesJ0 andJ3.
The former determines the effective exchange energy of the neighbouring atomic spin, and
the latter determines the effective atomic spin value. For temperature much higher than
the Curie temperature, the sub-spins are effectively decoupled by the thermal fluctuations,
and the Curie constant is just the sum of the contributions from the two sub-spin species,
and is independent of the interaction details. The influence of various exchange energies
and sub-spin values on the magnetic property is clearly shown in table 1. Note that for the
same set of sub-spins, the saturation magnetization depends on the sign of the exchange
energyJ3.

Although the results that we obtained in this paper are valid only for localized moments,
such as those in the magnetic insulator, we feel that some of the conclusions can also be
applied qualitatively to transition metal ferromagnetism. As we discussed in the introduction,
the magnetic moment inferred from the Curie constantµeff and the saturated magnetic
moment µ̄ should be the same if the moment is rigid and localized. However, the
experimental values areµeff = 3.13µB and µ̄ = 1.91µB for iron, andµeff = 1.6µB
and µ̄ = 0.6µB for nickel, according to a Rhodes–Wohlfarth plot [16]. While part of the
difference betweenµeff and µ̄ can be explained by the itinerant nature of these systems
as was pointed out in an electronic band calculation including the localized moment [17],
the Curie constant is still too small in comparison with experimental values. These data
indicate that the internal spin fluctuations within an atom should be handled more carefully.

4. Conclusion

In summary, we have studied the magnetic properties of an extended Heisenberg model with
two coupled spins per site. The two-spin Heisenberg model is solved using the double-time
Green’s function method. Our result shows that the saturated magnetic moment depends
on the sum of the two sub-spins and their relative orientation, while the Curie constant
depends only on the magnitudes of individual sub-spin species. Thus, our result shows
that the saturated magnetic moment is not intrinsically related to the Curie constant. Our
study also suggests that the discrepancy between the Curie constant and saturated magnetic
moment found in some itinerant systems may result from the neglect of some internal spin
fluctuations.
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